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With the in-plane inertia, the response of bimodular material laminated cylindrical

panels computed using direct time integration shows numerical instability. This

instability is due to the sudden change in the restoring force from positive/negative

half cycle to negative/positive half cycle. The sudden change in restoring force with in-

plane inertia excites higher harmonics at every instant of a cycle change leading to

numerical instability. This numerical instability can be eliminated if the switch over

from positive to negative half cycle or vice versa is exactly at the instant when restoring

force is zero. However all the elements of restoring force vector do not become zero

simultaneously when direct time integration is performed. Thus it is not possible in the

numerical time integration approach to find time instant when restoring force vector

becomes a null vector. Therefore, an approach based on Galerkin method in time domain

is proposed for the steady-state response of bimodular material structures that

eliminates the instability. Its efficacy is demonstrated for the first time for frequency

response of bimodular material laminated cylindrical panels modelled using finite

element based on Bert’s constitutive model.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The time domain numerical integration techniques are quite well established in the area of structural dynamics for
unimodular materials. These techniques may predict the frequency response of bimodulus structures without considering
in-plane inertia for a very limited range of cases. In the presence of in-plane inertia, the sudden change of restoring force
from positive/negative half cycle to negative/positive half cycle excites higher harmonics at every instant of cycle change
leading to numerical instability in the time marching scheme. It is not possible to eliminate this instability by switching
over at the instant when restoring force vector is null since elements of displacement vector do not cross zero
simultaneously in a numerical time integration. Thus these methods fail to predict the steady-state/frequency response of
bimodular structures. This difficulty has been overcome by developing a methodology based on time domain Galerkin
approach. This is not the sole purpose of the present study but also to give bench mark solutions for frequency response of
bimodular cylindrical panels. It should be kept in mind that frequency response of bimodulus structures is not dealt in the
open literature. Therefore, the present investigation may be attributed to an effort that addresses both the above aspects.

The literature on the dynamics of bimodulus structures, either free vibration or forced vibration analyses, is quite
limited [1–7]. The free vibration analysis of bimodular material cross-ply laminated rectangular plates is carried out by Bert
et al. [1], Doong and Chen [2], Doong and Fung [3]. Patel et al. [4] have carried out the free vibration analysis of angle-ply
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laminated bimodulus thick rectangular plates. The free vibration analysis of cross-ply and angle-ply cylindrical panels is
carried out by Bert and Kumar [5] and Khan et al. [6,7], respectively. The free vibration of cross-ply conical panels is carried
out by Khan et al. [8]. The transient response of bimodular rectangular plates is studied by Reddy [9] and Patel et al. [10]
wherein the investigation/analysis is limited to first cycle only.

The steady-state frequency response of bimodulus laminated structures has not received the attention of researchers in
the open literature. The frequency response is important for the design of such structures under dynamic loading.

Adopting the fiber direction strain governed constitutive model due to Bert [11], the steady-state response of bimodulus
material laminated cylindrical panels is studied using finite element method based on first-order shear deformation theory.
The solution of governing equations is obtained using two approaches: (i) direct time integration (Newmark’s
constant–average acceleration scheme) till steady state is reached for different forcing frequencies and (ii) Galerkin
approach wherein the steady-state solution is assumed in the form of a Fourier series. Some of the results obtained from
both the approaches are compared. It is found that for bimodulus laminates with significant difference in the positive and
negative half cycle frequencies, the direct time integration approach fails to predict steady-state response. The influence of
geometrical parameters, lamination scheme and boundary conditions on steady-state response of bimodulus material
laminated cylindrical panels is investigated.

2. Formulation

The geometry and coordinate system of a cylindrical panel with total thickness h, radius r, meridional length L,
circumferential length b and sector angle C is shown in Fig. 1. The displacement field (u, v, w) at a point (s, y, z) is expressed
as function of middle surface displacements u0, v0, w0 and independent rotations bs and by of the meridional and hoop
sections, respectively, as

uðs; y; z; tÞ ¼ u0ðs;y; tÞ þ zbsðs; y; tÞ

vðs; y; z; tÞ ¼ v0ðs; y; tÞ þ zbyðs; y; tÞ

wðs; y; z; tÞ ¼ w0ðs; y; tÞ (1)

The analysis is carried out using finite element formulation based on Bert’s constitutive model [1] and Sanders [12] type
kinematic approximations. The finite element used is a C0 eight-noded serendipity quadrilateral shear flexible shell
element with 5 degrees of freedom (u0, v0, w0, bs, by) developed based on the field consistency approach [13]. The details of
the finite element formulation and its validation for free vibration analysis of bimodular material laminated plates/shells
can be found in Ref. [7].

The governing equations of motion, considering dissipative forces, take the form

½M�f €dg þ ½C�f _dg þ ½K�fdg ¼ fFg (2)

where [M], [K] and [C] are global mass, stiffness and damping matrices, and {F} is consistent global load vector. The
damping matrix is taken proportional to mass matrix as: [C] ¼ b[M]; b ¼ 2xo, where x is modal damping factor and o is
z

L

h

b

s
�

�

r

Fig. 1. Geometry and coordinate system of cylindrical panel.
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natural frequency. Assuming solution fdg ¼ fd̄geiot for undamped free vibration, Eq. (2) becomes

½K�fd̄g ¼ o2½M�fd̄g (3)

Free vibration frequencies and corresponding modal vectors are extracted using iterative eigenvalue approach [7].
3. Solution method

For the forced response analysis, the solution of Eq. (2) is obtained using two approaches: (i) direct time integration
(Newmark’s constant–average acceleration) [14] till steady state is reached and (ii) Galerkin approach wherein the steady-
state solution is assumed in the form of a Fourier series. Some of the results obtained from both the approaches are
compared. It is found that for bimodulus laminates with significant difference in the positive and negative half cycle free
vibration frequencies, the direct time integration approach fails to predict steady-state response.

The solution procedure based on Galerkin’s approach is discussed here.
3.1. Galerkin approach

The steady-state forced response of panels subjected to uniformly distributed harmonic excitation (q ¼ q0 CosoFt) is
obtained using Galerkin method in time domain. The solution is assumed as

fdg ¼ fd0g þ
Xm
i¼1

ðfdcigCos ioFt þ fdsigSin ioFtÞ (4)

where oF is forcing frequency and t is time.
Substituting Eq. (4) in Eq. (2), the residual vector {R} is written as

fRg ¼ �o2
F ½M�

Xm
i¼1

i2ðfdcigCos ioFt þ fdsigSin ioFtÞ �oF ½C�
Xm
i¼1

iðfdcigSin ioF t � fdsigCos ioFtÞ

þ ½K�fd0g þ ½K�
Xm
i¼1

ðfdcigCos ioFt þ fdsigSin ioFtÞ � fFg (5)

To generate the (2m+1)n equations in terms of (2m+1)n unknowns (fd0g; fdcig; fdsig, i ¼ 1,2,y,m), the weighted integral of
residual {R} over one time period is equated to zero for weighting functions: 1, Cos ioFt, Sin ioFt, i ¼ 1,2,y,m. For each
weighting function (say Cos ioFt), the integration w.r.t time is performed piecewise as follows:

Z t1

0
fRgCos ioF t dt þ

Z t2

t1

fRgCos ioFt dt þ

Z 2p=oF

t2

fRgCos ioF t dt ¼ 0 (6)

Here t1 and t2 are time instants within a cycle when response changes from positive/negative half cycle to negative/
positive half cycle (see Fig. 2). It may be noted that {R} is different for positive and negative half cycles since the stiffness
matrix [K] is different for positive (say [K1]) and negative (say [K2]) half cycles.
Time, t Time, t
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Fig. 2. Response during two portions of a vibration cycle of bimodular panel.
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The final set of equations, considering all the (2m+1) weighting functions, is written as

½A0;0� ½A0;c1� ½A0;s1� : ½A0;cj� ½A0;sj� : : : : :

½Ac1;0� ½Ac1;c1� ½Ac1;s1� : ½Ac1;cj� ½Ac1;sj� : : : : :

½As1;0� ½As1;c1� ½As1;s1� : ½As1;cj� ½As1;sj� : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

½Aci;0� ½Aci;c1� ½Aci;s1� : ½Aci;cj� ½Aci;sj� : : : : :

½Asi;0� ½Asi;c1� ½Asi;s1� : ½Asi;cj� ½Asi;sj� : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

2
6666666666666666666664

3
7777777777777777777775

d0
� �
fdc1g

fds1g

:

fdcjg

fdsjg

:

:

:

:

:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

¼

0f g

ðp=oF ÞfF0g

f0g

:

f0g

f0g

:

f0g

f0g

:

:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

(7)

where coefficient sub-matrices of Eq. (7), for motion from 0 to t1 and t2 to 2p/oF corresponding to positive half cycle and
that from t1 to t2 corresponding to negative half cycle, are expressed as

½A0;0� ¼ ½K1�ðt1 � t2 þ 2p=oF Þ þ ½K2�ðt2 � t1Þ;

½A0;cj� ¼ ½½K1� � ½K2��ðSin joFt1 � Sin joF t2Þ=ðjoF Þ; j ¼ 1; . . . ;m;

½A0;sj� ¼ ½½K1� � ½K2��ðCos joFt2 � Cos joFt1Þ=ðjoF Þ; j ¼ 1; . . . ;m;

½Aci;0� ¼ ½½K1� � ½K2��ðSin ioFt1 � Sin ioFt2Þ=ðioF Þ; i ¼ 1; . . . ;m;

½Asi;0� ¼ ½½K1� � ½K2��ðCos ioFt2 � Cos ioFt1Þ=ðioF Þ; i ¼ 1; . . . ;m;

For iaj:

½Aci;cj� ¼ ½½K1� � ½K2��ððSinðiþ jÞoFt1 � Sinðiþ jÞoFt2Þ=ðiþ jÞ þ ðSinði� jÞoFt1 � Sinði� jÞoF t2Þ=ði� jÞÞ=ð2oF Þ;

½Aci;sj� ¼ ½½K1� � ½K2��ððCosðiþ jÞoF t1 � Cosðiþ jÞoF t2Þ=ðiþ jÞ þ ðCosði� jÞoFt1 � Cosði� jÞoFt2Þ=ði� jÞÞ=ð2oF Þ;

½Asi;cj� ¼ ½½K1� � ½K2��ððCosðiþ jÞoF t2 � Cosðiþ jÞoF t1Þ=ðiþ jÞ þ ðCosði� jÞoFt2 � Cosði� jÞoFt1Þ=ði� jÞÞ=ð2oF Þ;

½Asi;sj� ¼ ½½K1� � ½K2��ððSinðiþ jÞoF t2 � Sinðiþ jÞoFt1Þ=ðiþ jÞ þ ðSinði� jÞoFt1 � Sinði� jÞoFt2Þ=ði� jÞÞ=ð2oF Þ;

For i ¼ j:

½Aci;cj� ¼ ½½K1� � ½K2��ððt1� t2Þ=2þ ðSin 2ioFt1 � Sin 2ioF t2Þ=ð4ioF ÞÞ þ ½K1�ðp=oF Þ � ½M�pi2oF ;

½Aci;sj� ¼ ½½K1� � ½K2��ðCos 2ioF t2 � Cos 2ioFt1Þ=ð4ioF Þ þ ½C�ip;

½Asi;cj� ¼ ½½K1� � ½K2��ðCos 2ioF t2 � Cos 2ioFt1Þ=ð4ioF Þ � ½C�ip;

½Asi;sj� ¼ ½½K1� � ½K2��ððt1� t2Þ=2� ðSin 2ioFt1 � Sin 2ioFt2Þ=ð4ioF ÞÞ þ ½K1�ðp=oF Þ � ½M�pi2oF .

In the above expressions, [K1] and [K2] are interchanged if motion from 0 to t1 and t2 to 2p/oF corresponds to negative
half cycle and that from t1 to t2 corresponds to positive half cycle.

Since t1 and t2 are not known a priori, two additional equations are required. These equations are obtained by equating
the transverse displacement at an anti-node point of a mode (frequency response is studied here in the neighbourhood of a
free vibration frequency) to zero at t1 and t2 as follows:

w00 þ
Xm
i¼1

ðw0ci Cos ioF t1 þw0si Sin ioFt1Þ ¼ 0 (8)

w00 þ
Xm
i¼1

ðw0ci Cos ioF t2 þw0si Sin ioFt2Þ ¼ 0 (9)

Eqs. (7)–(9) constitute (2m+1)n+2 nonlinear (due to unknowns t1 and t2) equations in (2m+1)n+2 unknowns. In order to
obtain the solution of these equations using Newton–Raphson iterative technique, the incremental equations can be
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written as

½A0;0� ½A0;c1� ½A0;s1� : ½A0;cj� ½A0;sj� : : : : :

½Ac1;0� ½Ac1;c1� ½Ac1;s1� : ½Ac1;cj� ½Ac1;sj� : : : : :

½As1;0� ½As1;c1� ½As1;s1� : ½As1;cj� ½As1;sj� : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

½Aci;0� ½Aci;c1� ½Aci;s1� : ½Aci;cj� ½Aci;sj� : : : : :

½Asi;0� ½Asi;c1� ½Asi;s1� : ½Asi;cj� ½Asi;sj� : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

2
6666666666666666666664

3
7777777777777777777775

Dd0
� �
fDdc1g

fDds1g

:

fDdcjg

fDdsjg

:

:

:

:

:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

¼

r0
� �
frc1g

frs1g

:

:

:

:

frcig

frsig

:

:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

(10)

where

fr0g ¼ �½A0;0�fd0g �
Xm
j¼1

ð½A0;cj�fdcjg þ ½A0;sj�fdsjgÞ � ff0;1gDt1 � ff0;2gDt2;

frc1g ¼ ðp=oF ÞfF0g � ½Ac1;0�fd0g �
Xm
j¼1

ð½Ac1;cj�fdcjg þ ½Ac1;sj�fdsjgÞ � ffc1;1gDt1 � ffc1;2gDt2;

frs1g ¼ �½As1;0�fd0g �
Xm
j¼1

ð½As1;cj�fdcjg þ ½As1;sj�fdsjgÞ � ffs1;1gDt1 � ffs1;2gDt2;

frcig ¼ �½Aci;0�fd0g �
Xm
j¼1

ð½Aci;cj�fdcjg þ ½Aci;sj�fdsjgÞ � ffci;1gDt1 � ffci;2gDt2; i ¼ 2;3;4; . . . ;m;

frsig ¼ �½Asi;0�fd0g �
Xm
j¼1

ð½Asi;cj�fdcjg þ ½Asi;sj�fdsjgÞ � ffsi;1gDt1 � ffsi;2gDt2;

ff0;pg ¼
qA0;0

qtp

� �
fd0g þ

Xm
j¼1

qA0;cj

qtp

" #
fdcjg þ

qA0;sj

qtp

" #
fdsjg

 !
; p ¼ 1;2;

ffci;pg ¼
qAci;0

qtp

� �
fd0g þ

Xm
j¼1

qAci;cj

qtp

" #
fdcjg þ

qAci;sj

qtp

" #
fdsjg

 !
; i ¼ 1;2;3; . . . ;m;

ffsi;pg ¼
qAsi;0

qtp

� �
fd0g þ

Xm
j¼1

qAsi;cj

qtp

" #
fdcjg þ

qAsi;sj

qtp

" #
fdsjg

 !
.

The coefficient matrix of Eq. (10) is unsymmetric and sparse but the nonzero coefficients are scattered throughout. It may
be noted that the matrices in Eq. (2) are symmetric and banded with semi-bandwidth (nb) being much smaller than the
total number of unknowns (n). Eq. (10) is rearranged so that the rearranged equations are banded with semi-bandwidth
equal to m times nb.

The incremental forms of Eqs. (8) and (9) are written as

Dw00 þ
Xm
i¼1

ðDw0ci Cos ioF t1 þ Dw0si Sin ioFt1Þ þ
Xm
i¼1

ð�w0ciSin ioFt1 þw0si Cos ioFt1ÞioF

 !
Dt1 ¼ 0 (11a)

Dw00 þ
Xm
i¼1

ðDw0ci Cos ioF t2 þ Dw0si Sin ioFt2Þ þ
Xm
i¼1

ð�w0ciSin ioFt2 þw0si Cos ioFt2ÞioF

 !
Dt2 ¼ 0 (11b)

First, Eq. (10) is used to express the incremental displacement vectors (fDd0g; fDdcig; fDdsig, i ¼ 1, 2, 3,y,m) in terms of
Dt1 and Dt2. This solution is substituted in Eq. (11) and the resulting equations are solved for Dt1 and Dt2, and in turn,
incremental displacement vectors are obtained. To start the solution, forcing frequency ratio (oF/o, o is fundamental free
vibration frequency) is taken as 0.9. At this starting point, displacement vectors are initialized to zero, and t1 and t2 are
assumed as p/(2oF) and 3p/(2oF), respectively. With these starting values, the iteration is continued till the solution
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converges to the specified convergence tolerance (each incremental displacement becomes less than 10�7). Then the
forcing frequency is incremented. With the solution of the previous step as starting point, the converged solution for new
forcing frequency is obtained. This is repeated till solution up to the desired forcing frequency is obtained.

When oF/o crosses 1, the phase lag of response becomes greater than 901. At forcing frequency ratio greater than one, t1

becomes negative if iteration continued from previous solution. For this case, values of t1 and t2 are reinitialized at the
starting iteration so that these lie in the range 0 to 2p/oF.

For the parameters considered in the present study, the detailed analysis revealed that the participation of higher
harmonics is quite important but their participation is limited to the extent that the displacement of anti-node point
crosses zero displacement only twice within an excitation period and hence the piecewise integration, as given in Eq. (6), is
valid. If this displacement crosses more than twice, then the response period has to be divided accordingly for performing
the integrations similar to Eq. (6) and correspondingly the number of unknowns corresponding to zero crossing time will
increase. This can easily be incorporated in the developed Galerkin’s based solution methodology presented.
4. Results and discussion

Based on the progressive mesh refinement, 10�10 mesh is found to be adequate to model the full panels. The material
properties considered in the analysis are [6]:

In tension: E1t ¼ 3.58 GPa, E2t ¼ E3t ¼ 0.00909 GPa, G12t ¼ G13t ¼ 0.0037 GPa, G23t ¼ 0.0029 GPa, n12t ¼ n23t ¼

n13t ¼ 0.416.
In compression: E1c ¼ E2c ¼ E3c ¼ 0.012 GPa, G12c ¼ G13c ¼ 0.0037 GPa, G23c ¼ 0.00499 GPa, n12c ¼ n23c ¼ n13c ¼ 0.205.
Density r ¼ 970 Kg/m3 is same in tension and compression. The modal damping factor (x) is taken as 0.01 for the

steady-state frequency response analysis.
Boundary conditions considered are:
0 10
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Ref.[10]
Present

Fig. 3. Comparison of transverse displace
20 30 40 50 60 70

L/h = 10

L/h = 5

Time, t (Sec.)

ment history of two-layered cross-ply (01/901) square bimodular
Simply supported:
 u0 ¼ w0 ¼ bs ¼ 0
 at y ¼ 0 and b/r (straight edges)
v0 ¼ w0 ¼ by ¼ 0
 at s ¼ 0 and L (curved edges)
Clamped:
 u0 ¼ v0 ¼ w0 ¼ bs ¼ by ¼ 0
 at straight/curved edges
The various combinations of edge conditions considered are: straight edges simply supported and curved edges clamped
(SCSC), all edges simply supported (SSSS), straight edges clamped and curved edges simply supported (CSCS). The
transverse displacement is presented in the nondimensional form as: W ¼ w0h3E2c/(q0L4). The fundamental free vibration
frequency o ¼ 2(1/o1+1/o2)�1, where o1 and o2 are free vibration frequencies corresponding positive and negative half
cycles, respectively.

Since the results are not available for steady-state response of bimodulus material laminated structures, the present
formulation is validated considering transient response. The results are presented in Fig. 3 for bimodular cross-ply
80

laminate (L/b ¼ 1).
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laminated (01/901) simply supported square plate. It can be seen from this figure that the present results are in good
agreement with those of Ref. [10].

The response of eight-layered cross-ply (01/901)4 bimodular SCSC panel (L/b ¼ 1, b/h ¼ 10, r/h ¼ 100, x ¼ 0.01) subjected
to uniformly distributed harmonic excitation (q ¼ q0 CosoFt) is obtained using Newmark direct time integration scheme
ðDt ¼ p=100oF Þ. The time versus nondimensional central transverse displacement response is shown in Fig. 4 with and
without considering in-plane inertia. It can be seen from this figure that the steady state is reached when in-plane inertia is
not considered. With the in-plane inertia, the response shows unstable nature after few cycles. This instability in the direct
time integration approach is due to the sudden change in the restoring force ([K]{d}) when response changes from positive/
0 0.0005 0.001 0.0015 0.002 0.0025 0.003
-10

-5

0

5

10

W

t

0 0.01 0.02 0.03 0.04 0.05
-40

-30

-20

-10

0

10

20

30

40

W

t

Fig. 4. Nondimensional transverse central displacement (W) history of eight-layered cross-ply (01/901)4 bimodular SCSC panel (L/b ¼ 1, b/h ¼ 10, r/

h ¼ 100): (a) with in-plane inertia and (b) without in-plane inertia.
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negative half cycle to negative/positive half cycle. The change in the restoring force components corresponding to in-plane
displacements (u0, v0) is greater than those corresponding to transverse displacement (w). The abrupt change in restoring
force with in-plane inertia excites higher harmonics at every instant of a cycle change leading to numerical instability. This
numerical instability can be eliminated if the switch over from positive to negative half cycle or vice versa is exactly at the
instant when restoring force becomes zero. The zero restoring force corresponds to the null displacement vector ({d} ¼ {0}).
0 0.02 0.04 0.06 0.08

-150

-100

-50

0

50

100

150

W

t

Fig. 5. Nondimensional transverse central displacement (W) history of eight-layered cross-ply (01/901)4 bimodular SSSS panel (L/b ¼ 1, b/h ¼ 10, r/h ¼ 20,

oF/o ¼ 1.0) without in-plane inertia (o1 ¼ 29 608.329 rad/s, o2 ¼ 10 796.7197 rad/s, 100(o1�o2)/o1 ¼ 20.18).

0 0.001 0.002 0.003 0.004 0.005
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Fig. 6. Nondimensional transverse central displacement (W) history of two-layered cross-ply (01/901) bimodular CSCS panel (L/b ¼ 2, b/h ¼ 10, r/h ¼ 50,

oF/o ¼ 1.0) without in-plane inertia (o1 ¼ 29608.329 rad/s, o2 ¼ 10796.7197 rad/s, 100 (o1–o2)/o1 ¼ 64.27).
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However, it is found that the all the elements of displacement vector do not become zero simultaneously when direct time
integration is performed. Thus it is not possible in the direct numerical time integration approach to find the time instant
when restoring force vector goes to zero. In some cases (particularly in the direct numerical time integration approach
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Fig. 7. Nondimensional transverse central displacement (W) history of eight-layered cross-ply (01/901)4 bimodular SCSC panel (L/b ¼ 1, b/h ¼ 10, r/

h ¼ 100) with in-plane inertia: (a) Dt ¼ p=200oF , (b) Dt ¼ p=400oF , (c) Dt ¼ p=800oF and (d) Dt ¼ p=3000oF ).
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Fig. 8. Comparision of frequency response of eight-layered cross-ply (01/901)4 SCSC panel (L/b ¼ 1, b/h ¼ 10, r/h ¼ 100) without in-plane inertia.
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when percentage difference of positive and negative half cycle free vibration frequencies is larger) even without in-plane
inertia, the numerical instability occurs (Figs. 5 and 6). This is due to the sudden change in restoring force corresponding to
transverse displacement. The time integration is also performed with smaller time steps (Dt ¼ p=200oF , p=400oF ,
p=800oF , p=3000oF), however, the numerical instability continue to occur at slightly later time instants (Fig. 7). Therefore,
the detailed results obtained using proposed Galerkin method based approach are presented.

The frequency response of eight-layered (01/901)4 bimodular SCSC panel (L/b ¼ 1, r/h ¼ 100, b/h ¼ 10) without
considering in-plane inertia is studied. The results obtained using Galerkin and direct time integration approaches are
shown in Fig. 8. It can be seen that the Galerkin solution with m ¼ 4 matches very well with the direct time integration
approach. The convergence study for eight-layered (01/901)4 SSSS panel (L/b ¼ 1, r/h ¼ 20, b/h ¼ 10) considering in-plane
inertia is shown in Fig. 9. It can be seen from this figure that the solution with m ¼ 6 is quite accurate. The convergence is
established for both displacement amplitude as well as oF/o ratio corresponding to peak displacement amplitude. It is
interesting to note that with the increase in the number of terms (m), the occurrence of maximum central deflection
approaches to oF/o ¼ 1. To demonstrate the efficacy of the Galerkin based approach, the results presented for different
boundary conditions, geometrical and lamination parameters are discussed next.

The effects of aspect ratio (L/b), radius-to-thickness ratio (r/h) and number of layers (N) on the frequency response of
cross-ply laminated SCSC panels (b/h ¼ 10) are shown in Figs. 10 and 11. It can be seen from these results that with the
increase in L/b, nondimensional amplitude (W) decreases and percentage difference of positive and negative half cycle
amplitudes increases. The effect of r/h ratio on frequency response is not significant. As number of layers increases, the
percentage difference of positive and negative half cycle amplitudes decreases. The participation of various harmonics
(values of w00, w0ci and w0si) in the forced response of two-layered (01/901) SCSC panel (L/b ¼ 2, r/h ¼ 50, b/h ¼ 10) is given
in Table 1. The comparison of frequency response of unimodular (with tensile/compressive/average properties) and
bimodular eight-layered (01/901)4 SCSC panel (L/b ¼ 1, r/h ¼ 100, b/h ¼ 10) is shown in Fig. 12. It can be seen from this
figure that the bimodularity has significant effect on the frequency response.

The effect of b/h ratio on the frequency response of two- and eight-layered SCSC panels (L/b ¼ 1, r/h ¼ 100, b/h ¼ 20, 40,
50) is shown in Fig. 13. It can be seen that the nondimensional transverse displacement amplitude decreases with the
increase in b/h. The percentage difference of amplitudes of two- and eight-layered panels increases with the increase in b/h.

The frequency response of two-layered (01/901) SSSS panel (L/b ¼ 0.5, 1.0; r/h ¼ 20, 50, 100; b/h ¼ 10) is shown in Fig. 14.
The response is qualitatively similar to SCSC panels. But, the percentage difference of positive and negative half cycle
amplitudes is significant. The influence of r/h is more on positive half cycle amplitude for L/b ¼ 0.5. The local distortions of
the frequency response curves for some cases are due to the changes in the relative participation of higher harmonics.
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Fig. 9. Convergence study for frequency response of eight-layered cross-ply (01/901)4 SSSS panel (L/b ¼ 1, b/h ¼ 10, r/h ¼ 20) with in-plane inertia.
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Fig. 10. Frequency response of two- and eight-layered cross-ply SCSC panel (L/b ¼ 1, b/h ¼ 10) with in-plane inertia: (a) positive half cycle amplitude and

(b) negative half cycle amplitude.
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5. Conclusion

The forced dynamic response of bimodulus material laminated cylindrical panels is studied using finite element method
based on first-order shear deformation theory and Bert’s constitutive model. The solution of governing equations is
obtained using direct time integration and Galerkin approach. It is found that for bimodulus laminates with signifi-
cant difference in the positive and negative half cycle frequencies, the direct time integration approach fails to predict
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Fig. 11. Frequency response of two- and eight-layered cross-ply SCSC panel (L/b ¼ 2, b/h ¼ 10) with in-plane inertia: (a) positive half cycle amplitude and

(b) negative half cycle amplitude.

Table 1
Participation of various harmonics in the forced response of two-layered (01/901) SCSC panel (L/b ¼ 2, r/h ¼ 50, b/h ¼ 10).

oF/o w0 wc1 ws1 wc2 ws2 wc3 ws3 wc4 ws4 wc5 ws5 wc6 ws6

0.995 �1.233 5.165 9.269 �0.136 0.217 �0.012 0.060 �0.0006 0.0089 0.0015 0.0034 �0.0239 �0.2703

1.0 �1.395 0.688 12.004 �0.271 0.037 �0.007 �0.011 -0.0062 0.00007 �0.0004 0.0043 �0.0998 0.0758

1.005 �1.273 �4.425 10.042 �0.173 �0.179 0.0107 �0.0014 0.0013 �0.0060 �0.0007 �0.0018 0.0404 �0.0388
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steady-state response due to numerical instability. This instability due to the sudden change in the restoring force can be
eliminated if the switch over from positive to negative half cycle or vice versa is exactly at the instant when restoring force
is zero. However, it is found that it is not possible in the numerical time integration approach to find time instant when
restoring force vector becomes a null vector. Galerkin’s based approach is found suitable for frequency response analysis of
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bimodular laminated structures. Its application is demonstrated for bimodular cylindrical panels with different geometrical
parameters and boundary conditions.
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